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Abstract

Functional brain imaging is a common tool in monitoring the progression of neurodegenerative 

and neurological disorders. Identifying functional brain imaging derived features that can 

accurately detect neurological disease is of primary importance to the medical community. 

Research in computer vision techniques to identify objects in photographs have reported high 

accuracies in that domain, but their direct applicability to identifying disease in functional imaging 

is still under investigation in the medical community. In particular, Serre et al. (Serre, et al. 2005) 

introduced a biophysically inspired filtering method emulating visual processing in striate cortex 

which they applied to perform object recognition in photographs. In this work, the model 

described by Serre et al. is extended to 3D volumetric images to perform signal detection in 

functional brain imaging (PET, SPECT). The filter outputs are used to train both neural network 

and logistic regression classifiers and tested on two distinct datasets: ADNI Alzheimer’s disease 2-

deoxy-D-glucose (FDG) PET and National Football League players Tc99m HMPAO SPECT. The 

filtering pipeline is analyzed to identify which steps are most important for classification accuracy. 

Our results compare favorably with other published classification results and outperform those of 

a blinded expert human rater, suggesting the utility of this approach.
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INTRODUCTION

Significant progress has been made in the diagnostic decision-making processes and in 

predicting the onset and the course of brain disorders (Kantarci and Jack Jr 2003; Lovestone 

2010; Rachakonda, et al. 2004; Roe, et al. 2011). The traditional endpoint diagnosis, clinical 

measurements and cognitive tests used in clinical trials have proved to be informative but 

have their own limitations in accurately quantifying the progression of brain disorders in an 

unbiased and objective manner (Borroni, et al. 2007; Knopman, et al. 2001). Advances in 

brain imaging technologies have enabled researchers to investigate and test novel 

biomarkers that could serve either as diagnostic tools to aid clinical decision-making or as 

surrogates, reflecting disease progression and underlying disease pathology (Biomarkers 

Definitions Working Group, 2001). Accordingly, there is a growing body of evidence in the 

literature showing that structural and functional brain imaging can be valuable tools for 

predicting and classifying gradually progressive neurological and psychiatric disorders such 

as Alzheimer’s disease (AD) (Drzezga 2009; Kawachi, et al. 2006; Mosconi, et al. 2006; 

Nordberg, et al. 2010; Tartaglia, et al. 2011). Although both PET and MRI imaging 

modalities have been found to be discriminative in various neurological disorders, there is 

disagreement in the community about which are most sensitive for particular disorders. 

Specifically, differences in sensitivity and specificity of structural Magnetic Resonance 

Imaging (MRI) and 2-deoxy-D-glucose (FDG) Positron Emission Tomography (PET) 

features in the prediction of early AD has been debated in the literature with no clear 

consensus (De Santi, et al. 2001; Mosconi, et al. 2006). Nevertheless, AD research studies 

evaluating the diagnostic and predictive value of regional specific glucose metabolic rate 

and volume changes suggest the greater reliability of FDG PET over MRI in discriminating 

AD from subjects with intact and mild cognitive impairment (De Santi, et al. 2001; 

Kawachi, et al. 2006; Mosconi, et al. 2006). However, De Santi and Mosconi indicate image 

post-processing influences the outcome of discriminative analyses and subsequently, their 

predictive value.

Although advances in imaging have enabled researchers to visually inspect both functional 

and structural brain scans of disease, it is often difficult for the human observer to identify 

the subtle differences in the brain images that are often necessary for reliable disease 

classification. Furthermore, visual identification of brain diseases by a human observer is 

time consuming and error prone. Automated image analysis algorithms that can reliably 

discriminate the diseased from the healthy brain are preferred because they save time, are 

generally less prone to errors, are not influenced by rater bias or inter-rater differences in 

neuroanatomical expertise, and can identify subtle statistical correlations in the data. For 

preventative and longitudinal studies in large populations, automated image analysis is 

critically important to evaluate the data. To achieve automated and reliable image analysis 
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and classification, we can use computer vision techniques that are designed to extract 

information from images.

Object recognition in images and video is an active area of research in the computer vision 

community. Finding objects is fundamentally related to pattern recognition where the 

presence of unique patterns of colors, edges, and/or textures are consistent with a particular 

class of object. Probabilistic models are particularly well suited for recognition problems 

because they provide a structured approach to modeling uncertainty and can be less sensitive 

to noise in the data. Object recognition systems often consist of a feature extraction 

component and a classifier. The feature extractor is used to identify properties of the objects 

that are most important in discriminating one object from another. The features along with a 

labeled training set are then used to train a classifier to map the features into a class label for 

each object the detection system is built to recognize. Although the overall process is 

simple, there are many subtleties in real world applications of detection systems such as 

object illumination, scale, occlusion, and orientation that affect accuracy. Most often we 

have a small set of images representing the objects to be recognized and do not have 

exhaustive examples at all possible scales, orientations, illuminations, etc. The challenge is 

therefore to find a feature space that avoids irrelevant variations in the objects and instead 

captures the most discriminating characteristics (Forsyth and Ponce 2002).

One source of inspiration for engineering such invariant features is the primate visual 

system, which performs object detection robustly across a huge range of viewpoints, 

illuminations and occlusions. One very successful method, the Scale Invariant Feature 

Transform (SIFT) proposed by Lowe (Lowe 1999) uses features with partial invariance to 

local variations in scale and illumination, similar to the receptive fields of the neurons in the 

inferior temporal cortex, an area important for object recognition in primates. Serre et al. 

introduced a filtering method whose hierarchical architecture was designed specifically to 

emulate visual processing in the cat and primate striate cortex. They applied this method to 

detecting objects in photographs and reported high success rates from a few training 

examples. Mutch et al. (Mutch and Lowe 2006) reported similar performance results using a 

similar filtering scheme that scaled the input images instead of the filters as was done in the 

Serre work.

Similar to object recognition in photographs, for automated image-based diagnosis, it is 

necessary to ignore some classes of variation across healthy individuals while identifying 

other specific variations which are indicative of disease state. Differences in ligand uptake in 

the brain measured by functional brain imaging modalities such as FDG PET and Tc99m 

HMPAO Single Photon Emission Tomography (SPECT) result in spatially smooth patterns 

of differing intensities which can be used to differentiate a disease group from healthy 

subjects. Similarly, precise morphology/anatomy may vary among individuals requiring 

some degree of local scale and orientation invariance. Based on this insight, we extend the 

neurologically-inspired filtering model described by Serre et al. to signal detection in 

functional brain imaging. To evaluate how well the Serre feature model works in capturing 

disease patterns in the human brain, the model is extended to 3D volumetric space and 

signal detection differentiation in functional brain imaging. The hierarchical filtering 

pipeline is analyzed to identify which steps are most important for classification accuracy 
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and the filter outputs are used to train both neural network (NN) and logistic regression (LR) 

classifiers. Two distinct and previously published datasets are tested using this feature 

extraction and classification method: (1) Alzheimer’s Disease Neuroimaging Initiative 

(ADNI) AD FDG PET scans sampled at baseline, 12 month, and 24 month time-points 

versus the study specific age-matched healthy comparison (HC) subjects (Mueller, et al. 

2008); (2) a Tc99m HMPAO SPECT National Football League (NFL) dataset versus study 

specific age-matched HC subjects (Amen, et al. 2011). The AD classification results are 

further compared against a blinded expert human rater (co-author J.H. Fallon), providing a 

baseline measure of how well a human counterpart can recognize disease in the same 

dataset.

METHODS

2.1 Filtering and Feature extraction

The image filtering pipeline consists of a series of alternating steps of simple filtering (S 

layers) and complex filtering (C layers) layers briefly summarized here and discussed in 

detail in subsequent sections. The first simple layer (S1) outputs respond to oriented edges at 

different spatial scales and orientations (section 2.2). Spatial scales in this context refer to 

the underlying spatial distribution of the signal in the images. Filters with larger spatial 

scales will respond to larger (spatially) image signals. S1 layer filters are separated into 

“bands” where each band is composed of two similar spatial scales as shown in table 1, rows 

1 and 2. The first complex layer (C1) combines the outputs from the S1 layer at different 

scales but within orientations, providing scale invariance (section 2.3). The complex layers 

pool the simple layer outputs using a max operator, where the strongest simple layer output 

drives the complex layer output. The second simple layer (S2) matches the detections from 

the C1 layer against healthy subjects in a template matching framework where higher scores 

indicate a closer match (sections 2.3.1 and 2.4). The second complex layer (C2) combines 

the outputs from template matching scores across orientations gaining invariance to 

orientation (section 2.5).

2.2 S1 Layer

The S1 layer is computed by applying sixteen orientated 3D Gabor filters at orientations θ ∈ 

{0, π/4, π/2, 3π/4}, ϕ ∈ {0, π/4, π/2, 3π/4}, and wavelength λ to each brain scan in the 

dataset. A Gabor filter is a linear filter whose impulse response is a harmonic function 

multiplied by a Gaussian function:

(1)

The cosine term in equation (1) controls the harmonic component through the λ wavelength 

parameter. The variables x, y, and z are the spatial variables defining the spatial extent of the 

filter. The standard deviation σ describes the size of the Gaussian envelope. The orientation 

of the filter is represented by variables θ and ϕ, where ϕ orients the filter in the x–y plane 

and θ is the orientation from the positive z axis. For a detailed description of 3D Gabor 

filters, refer to Bau et al. (Bau and Healey 2009; Bau, et al. 2008). Frequency and orientation 
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representations of the filter are similar to those of the human visual system. The original 

Serre method performed Gabor filtering in 2D, consistent with the image matrix of 

photographs. In this work, the Gabor filtering was performed in 3D and applied using filter 

sizes, sigmas, and lambdas over a series of eight bands. The parameters of each band are 

listed in Table I, rows 2–4. The filter sizes and parameters were kept essentially the same as 

the Serre work, but the spatial extents of the bands were decreased in order to make the 

features more sensitive to small activation differences in functional brain imaging. The 

relative proportions between sizes across the bands remained the same. The voxel sizes of 

the functional brain imaging data used in this study were 2mm3 per voxel (see section 

Materials/Methods for a detailed description of the test data). The smallest filter size in the 

Serre work (7 pixels) if directly applied as 7 voxels would be unlikely to respond to small 

differential signals that could be discriminative in the context of functional imaging and 

disease. To avoid missing small signals, the lowest filter band was set to 3 voxels. An 

example of the AD PET scan slices filtered with the 3D Gabor functions are shown in 

Figure I. Oriented signals are indeed differentially selected by the filters, consistent with our 

hypothesized responses of the filters when applied to functional brain imaging data.

2.3 C1 Layer

The C1 layer combines incident S1 units of the same θ and ϕ orientations, creating tolerance 

to size and shift within Gabor filter orientation. Complex cells in the hierarchical visual 

cortex model have larger receptor fields than the S1 layer (Serre, et al. 2005). To 

operationalize this relationship, the S1 layer volumes are filtered with a max operator over 

Gabor filter scales (Table I, row 1(filter)), but within each orientation band (columns of 

Table I). Max filtering is a nonlinear image processing technique where the value at each 

voxel in the filtered image is the maximum of the input image voxels in a local 

neighborhood defined by the filter size. The filter size over which the maximums are 

calculated depends on the Gabor filter size (shown in Table I, row 4 (max grid)). Gabor 

filters with larger spatial scales will respond more strongly to larger (spatially) signals in the 

images at the same θ and ϕ orientations, therefore, the corresponding max filter sizes should 

be tuned accordingly. These operations are performed for each Gabor orientation and for 

each band resulting in 16*8 volumes, representing maximums over scales but within 

orientations. Due to the large numbers of voxels in the volumes and thus the large numbers 

of max operations over increasing neighborhoods, we used the algorithm developed by Van 

Herk et al. (Van Herk 1992) to efficiently compute the maximums over neighborhoods for 

each voxel in the S1 layer volumes. The method requires only a small number of operations 

per voxel to compute the maximums and lowers the computational time of this stage of the 

processing pipeline.

2.3.1 C1 Layer Training Patches—Template matching is a common approach to object 

recognition in computer vision systems. It is a technique which matches image regions to 

stored representative templates using a specific scoring function (Brunelli 2009). In this 

work, representative templates were collected on a random subset of hold-out healthy 

subjects to be used in the subsequent S2 layer template-matching step. Ten randomly 

selected hold-out training images were chosen for template extraction. Templates were 

extracted randomly across these training images and from random locations within the 
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images but constrained to fall within the boundaries of user specified regions of interest (see 

section 3.1). The regions from which templates are randomly sampled are completely user 

defined and could be chosen based on some a-priori hypothesis or from the literature. 

Selecting templates from specific regions of interest in the brain is similar to learning that a 

car is characterized by particular features in spatial locations, e.g. rides on four tires, has 

doors on the sides, a hood on the front, etc.

Operationally, the user selects regions of interest and the number of features prior to pipeline 

execution. We uniformly divide the number of random locations across the number of 

regions of interest. To generate the random voxel locations within a region of interest, we 

use an atlas labelmap, which assigns a numerical code to each atlas region. Each atlas region 

is therefore defined by all the contiguous voxels in the labelmap volume that have equal 

numerical codes. From this information, we can find the cube containing this region. We 

then use rejection sampling: drawing a random point uniformly within the cube, we accept it 

if it falls within the bounded region; otherwise we reject and try again. This process 

continues until the required number of locations has been found for each region. In our 

experiments, 50 or 100 templates were chosen to describe the low level representation of the 

brain images. We chose the two sets such that we had a reasonable number of templates per 

region of interest selected and so we could evaluate the dependence of the classification 

results on the number of feature scores used. The original Serre work suggests a modest 

dependence of performance on the number of feature scores used. For each selected 

template location, 53, 93, 133, and 173 voxel “patches” were extracted from each of the 16 

Gabor filtering orientations and bands from the C1 layer of the ten randomly selected hold-

out healthy subject training images. These patches are simply contiguous sets of voxels of 

differing spatial extents (53, 93, 133, and 173) centered on the template location and 

effectively give the vision system a “memory” of image feature examples from the 

functional brain images of healthy subjects.

2.4 S2 Layer

The S2 layer corresponds to the template-matching phase of the pipeline. For each C1 image 

in the test dataset and for each template patch collected from the hold-out healthy subject 

data, we compare the Gaussian radial basis function score shown in equation (2) for each 

band independently. The S2 unit’s response depends on the Euclidean distance between the 

test dataset patch (X) and the stored prototype patch (P) sampled at the same location, scale, 

and orientation. If the functional activity profile in the test data is identical to the stored 

template patch, the score equals 1 whereas if the differences from the stored template patch 

are large, the score approaches 0. The parameter γ normalizes for different patch sizes (n ∈ 

{5, 9, 13, 17}) when computing the score in equation (2). The parameter γ is fixed to (n/5)3 

where n is the patch size and the denominator is the smallest patch size. The parameter σ in 

equation (2) is the uncertainty or variance in the stored prototype patch (P). This parameter 

was set to 1 in all experiments. Alternatively, it could be set to the empirical variance of the 

training prototype patches discussed in section 2.3.1.
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(2)

2.5 C2 Layer

The final layer in the pipeline computes the maximum response of the S2 layer scores from 

all bands and orientations for each prototype template. The final feature sets therefore 

consist of 50 or 100 shift and scale invariant scores (i.e., for 50 and 100 prototype patches) 

that are subsequently used for classification. Conceptually, for each test image, for each 

prototype template patch sampled from a brain region, we are using the score that indicates 

the best match between the test image and a healthy subject regardless of signal size and 

orientation. We expect that subjects with neurological disorders will match less well with 

the healthy subjects and thus have a lower score. The final size of the feature vector 

therefore depends only on the number of patches extracted during training and not on the 

number of voxels in the full three-dimensional brain image. This allows the user to balance 

the number of template patches sampled during patch selection (i.e. number of features) and 

the number of subjects available in the dataset. Flexibility in choosing the number of 

features provides insulation from classifier over-fitting, which can occur if the number of 

features greatly exceeds the number of examples.

3. Evaluation

We used two datasets to evaluate the approach. Both are functional imaging datasets but 

distinctly different modalities. We selected these datasets to evaluate the generality of this 

approach and its application to distinctly different neurological abnormalities.

3.1 The Alzheimer’s Disease Neuroimaging Initiative (ADNI)

ADNI was launched in 2003 by the National Institute on Aging (NIA), the National Institute 

of Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug Administration 

(FDA), private pharmaceutical companies, and non-profit organizations as a $60 million, 5-

year public–private partnership. The primary goal of ADNI is to test whether serial magnetic 

resonance imaging (MRI), positron emission tomography (PET), other biological markers, 

such as cerebrospinal fluid (CSF) markers, APOE status and full-genome genotyping via 

blood sample, and clinical and neuropsychological assessments can be combined to measure 

the progression of mild cognitive impairment (MCI) and AD. Determination of sensitive and 

specific markers of very early AD progression is intended to: (1) aid in the development of 

new treatments, (2) increase the ability to monitor their effectiveness, and (3) reduce the 

time and cost of clinical trials. The principal investigator of the initiative is Michael W. 

Weiner, M.D., of the Veteran’s Affairs Medical Center and University of California, San 

Francisco. ADNI is the result of efforts of many co-investigators from a broad range of 

academic institutions and private corporations, and participants have been recruited from 

over 50 sites across the U.S. and Canada. ADNI participants range in age from 55 to 90 

years and include approximately 200 cognitively normal elderly followed for three years, 

400 elderly with MCI followed for three years, and 200 elderly with early AD followed for 
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two years. Participants are evaluated at baseline, 6, 12, 18 (for MCI only), 24, and 36 

months (AD participants do not have a 36 month evaluation). Baseline and longitudinal 

follow-up structural MRI scans are collected on the full sample and 11C-labeled Pittsburgh 

Compound-B (11C-PIB) and FDG PET scans are collected on a subset every 6–12 months 

(for study details see http://www.adni-info.org). A subset of these data were published in 

(Mueller, et al. 2008) and (Langbaum, et al. 2009) was used in this analysis.

3.2 AD Dataset

The dataset used in this study consisted of 154 baseline FDG PET scans acquired as part of 

the ADNI study and published in (Mueller, et al. 2008) and (Langbaum, et al. 2009). There 

were 82 HC subjects (Mini-Mental State Exam (MMSE) 28.6±1.1; Age 75.1±9.6 yrs) and 

72 AD subjects (MMSE 23.2±3.5; Age 75.1±11.2 yrs) from the baseline ADNI sample used 

for this study. The 12m and 24m ADNI samples contained a subset of the baseline dataset 

due to subject dropout. The 12m sample included 72 HC subjects (MMSE 29.2±1.2; Age 

77.5±8.4 yrs) and 61 AD subjects (MMSE 20.9±4.9; Age 75.4±11.8 yrs). The 24m sampled 

included 68 HC subjects (MMSE 28.6±3.7; Age 76.0±10.2 yrs) and 33 AD subjects (MMSE 

18.4±6.1; Age 74.6±15.2 yrs). The acquisition protocol consisted of collecting six five-

minute frames 30–60 minutes post 18FDG-injection. During the uptake period subjects were 

asked to rest comfortably in a dimly lit room with their eyes open. The collected frames 

were registered to the first frame (acquired at 30–35 min post-injection) and averaged to 

yield a single 30 minute average PET image in “native” space. The image matrix, field of 

view, and resolution of the datasets from participating sites were then matched by the ADNI 

group. The images were spatially normalized to the MNI atlas using SPM8 software (2007) 

resulting in image matrices of 79 × 95 × 68 voxels in x, y, and z dimensions respectively 

with isotropic 23mm voxel sizes. The Automated Anatomical Labeling (AAL) atlas was 

used to constrain the region of interest selection based on the anatomical parcellations 

available in the atlas (Tzourio-Mazoyer, et al. 2002). The AAL atlas used to define the 

region of interest boundaries is consistent with the space defined by the MNI atlas.

Coordinates for template patch sampling and S2 layer matching scores were constrained to 

fall within regions identified in the literature to be affected by AD (see sections 2.3.1 and 

2.4). Delacourte et al. identified stages of AD neurofibrillary degeneration in patients of 

various ages and different cognitive statuses (Delacourte, et al. 1999). Further, Langbaum et 

al. (Langbaum, et al. 2009) identified regions of reduced metabolic rates in AD. Regions 

included the cingulate cortex, parietal and temporal lobes, among others. For this study, we 

chose AAL atlas regions (bilateral): anterior and posterior cingulum, temporal lobes 

(middle), hippocampus, amygdala, thalamus, frontal and orbital cortices (superior and 

middle), temporal pole (superior, middle, inferior), and parietal lobe (inferior) as being 

consistent with published findings on potentially discriminative regions.

3.3 NFL Dataset

The NFL dataset used in this study consisted of 162 technetium-99m 

hexamethylpropyleneamine oxide (Tc99m HMPAO) SPECT scans acquired for a study 

evaluating the impact of playing American football by Amen et al. (Amen, et al. 2011). 

There were 83 HC (Age 41.7±17.8 yrs) and 79 NFL (Age: 57.5±11.5 yrs) subjects. Subjects 
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were injected with an age/weight appropriate dose of Tc99m HMPAO and performed the 

Conners’ Continuous Performance test II for 30 minutes during uptake. All subjects 

completed the task and were subsequently scanned on a high-resolution Picker Prism 3000 

triple-headed gamma camera with fan beam collimators. The original reconstructed image 

matrices were 128×128×29 voxels with sizes of 2.16mm ×2.16mm × 6.48mm. The images 

were spatially normalized to the MNI atlas using SPM8 software (2007) resulting in image 

matrices of 79 × 95 × 68 voxels in x, y, and z dimensions respectively with isotropic 23mm 

voxel sizes. Images were smoothed using an 8mm FWHM isotropic Gaussian kernel. The 

pre-processing steps were identical to the previously published work by Amen et al. In the 

previously published work, a subset of the HC dataset was used and matched on gender and 

race. For this work, all subjects were used regardless of race and gender.

Coordinates for template patch sampling and S2 layer matching scores (see sections 2.3.1 

and 2.4) were constrained to fall within regions identified in Amen et al. as the top 

discriminating regions for the NFL group. To our knowledge, the Amen study was the first 

brain imaging study evaluating NFL players and as such, the regions were picked based only 

on that publication. For this study, we used AAL atlas regions (bilateral): anterior and 

posterior cingulum, frontal pole, hippocampus, amygdala, and temporal pole (middle and 

inferior).

3.4 Ethics

The NFL study was approved by each of the participating sites’ Institutional Review Boards 

(IRBs) and complied with the Code of Ethics of the World Medical Association (Declaration 

of Helsinki). Written informed consent was obtained from all participants after they had 

received a complete description of the studies.

The ADNI data was previously collected across 50 research sites. Study subjects gave 

written informed consent at the time of enrollment for imaging and genetic sample 

collection and completed questionnaires approved by each participating sites’ Institutional 

Review Board (IRB).

3.5 Feature Sets

In order to identify which components of the feed-forward hierarchical model implemented 

in this study were most important in correct classification, three separate feature sets were 

computed. The FTM (Gabor filter + template match) feature set is the result of the full 

hierarchical pipeline as described in section 2. In order to understand the effect of the Gabor 

filtering, the TM (template matching) dataset was created using the same procedures 

outlined in section 2 without Gabor filtering. More precisely, the dataset consists of 

selecting template patches from the un-filtered images (neither S1 nor C1 layers) and 

performing the computations in the S2 and C2 layers. To evaluate the effect of template 

matching, the AP (average patch) feature set consists of simply averaging the voxels in the 

neighborhood around the prototype patch locations selected in section 2.3.1, across the 

various filter sizes (Table I, row 2) and taking the maximum response.

To compare the feature sets of the hierarchical model with more typical data reduction 

techniques, the maximum group difference (MaxT) and data reduction (DR) sets were 
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computed. The MaxT feature set is computed by performing a typical voxel-wise 

independent, 2 sample t-test in the SPM8 software. The resulting SPM(t) maps were then 

thresholded at p<0.01 (AD baseline), p<0.001 (AD 12m), p<0.001 (AD 24m), and p<1e-6 

(NFL) and corrected for multiple comparisons using the family-wise error rate (FWE) 

correction. Probability thresholds were chosen to limit the number of voxels in the resulting 

t-score maps such that similar numbers of voxels were obtained for each data set (~3K 

points). The absolute values of the resulting t-scores were ranked and the data from the top 

50 and 100 locations were then sampled from each subject and used for classification 

(MaxT). The DR feature set used all the locations found in the group difference maps, 

discussed above, after probability thresholding (~3K points), sampling the original data at 

those locations (~3K points) for each subject. The resulting N×K matrix (N subjects, K 

sampling locations) was mean-centered for each column K and run through principal 

components analysis (PCA). Each subject’s data was then projected onto the eigenvectors of 

the top 50 and 100 largest eigenvalues from the PCA decomposition giving a low 

dimensional representation with 50 or 100 feature scores that were subsequently used for 

classification. The top 50 and 100 largest eigenvectors were chosen so that the projected 

dataset contained 50 and 100 scores per subject, consistent with the number of feature scores 

calculated from the full feed-forward hierarchical model.

3.6 Classification

Classification was done using both a multilayered perceptron neural network (NN) and a 

logistic regression (LR) classifier to understand the dependence of the results on the 

classifier chosen (Hall, et al. 2009). Each classifier was trained separately on the same 

datasets to compare the performance of the simpler logistic regression classifier, able to find 

linear decision boundaries, with the neural network classifier, able to model more complex 

nonlinear functions. The neural network was constructed with one hidden layer (hidden 

layer nodes = (#features + #classes)/2) and trained with a learning rate of 0.3 and a 

momentum of 0.2. For each classifier, ten-fold cross validation was used. The dataset was 

divided in each fold into training and testing subsets. The classifier was trained using the 

training subset and tested on the testing subset. This process was repeated ten times. Areas 

under the receiver operating characteristic (ROC-AUC) curves were computed from the 

probability of class membership of the testing data from each of the trained classifiers. The 

full filtering pipeline ROC-AUC curves were statistically compared to each of the 

alternative methods for each dataset and classifier using the DeLong et al. (DeLong, et al. 

1988) method of comparing areas under correlated ROC curves as implemented in the 

pROC package (Robin, et al. 2011). To compute 95% confidence intervals and statistics, the 

data was resampled 2000 times, stratified by group membership.

To compare the classifier results on the baseline AD dataset with the visual ratings of 

neuroanatomist and co-author J.H. Fallon, true positive (TP) and false positive (FP) rates 

were calculated. To calculate the TP and FP rates, the probability of class membership from 

the trained classifiers for each testing subset data point, in each fold, was computed. The 

data point was assigned to the class with the largest probability. The TP rate was the 

proportion of examples in the testing subsets that were classified as class AD, among all 

testing examples that were originally labeled as class AD. The TP rate is the average across 

Keator et al. Page 10

Hum Brain Mapp. Author manuscript; available in PMC 2016 February 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



all folds. The FP rate was the proportion of examples in the testing subsets that were 

classified as class AD, but were originally labeled as the alternative class, among all testing 

examples which are not of class AD. The FP rate is the average across all folds. The TP and 

FP results for Dr. Fallon were computed from his designation of either AD or healthy 

control for each of the baseline data compared to the original class labels.

RESULTS

To summarize the performance of each classifier, the ROC-AUC results for the Alzheimer’s 

disease (AD) baseline, 12m, and 24m datasets are shown in Figures IIa, IIb, and IIc 

respectively for 50 and 100 feature datasets and both logistic regression and neural network 

classifiers. The confidence intervals for each ROC-AUC and statistical comparisons of the 

full filtering pipline (FTM) with each of the other methods for all classifiers and datasets are 

shown in Tables IIa, IIb, and IIc. The FTM method outperformed the other methods in terms 

of ROC-AUC in 80% of the tests, and was statistically better in 35%. No other method was 

statistically better than FTM; although, the PCA data reduction strategy (DR) in the 50-

feature, baseline AD, logistic regression classifier was close (p<0.064). Overall, the neural 

network classifier generally outperformed the logistic regression classifier in ROC-AUC. 

Further, the FTM method was statistically better than all other methods in 46% of the neural 

network classification experiments compared to 25% using the logistic regression classifier, 

suggesting a benefit of using the more sophisticated classifier with the FTM method. There 

was a small, non-significant, increase on average in ROC-AUC over all the classifiers in the 

results using the larger 100 feature datasets. Overall performance of the FTM trained 

classifiers were consistent with other published classification results (see Discussion) using 

the ADNI dataset, with maximum ROC-AUC at baseline of 0.962±0.025 (neural network, 

100 feature), at 12m of 0.837±0.073 (neural network, 100 feature), and at 24m of 

0.878±0.070 (neural network, 100 feature).

Neuroanatomist and co-author J.H. Fallon was given the baseline AD dataset images in 

transaxial, coronal, and sagittal orientations, without the diagnosis and given no practice set 

of normal or ADs to examine prior to the analysis, and asked to classify the scans as either 

AD or HC. These results are only available for the baseline AD data due to the significant 

effort in manually rating so many scans. Dr. Fallon achieved a true/false positive rate for AD 

of 0.718/0.380 and for the HC group of 0.671/0.244 as shown in Table IV. The FTM 

classifier performed better in both true/false positives for both AD and HC groups while also 

outperforming the maximum group difference (MaxT) and data reduction (DR) methods, 

further suggesting the potential utility of this approach.

The AUC results for the NFL group are shown in Figure III for 50 and 100 feature datasets 

and both logistic regression and neural network classifiers. The confidence intervals for each 

ROC-AUC and statistical comparisons of the FTM with each of the other methods for all 

classifiers and datasets are shown in Table III. Interestingly, unlike the AD dataset, the FTM 

method did not dominate the others, outperforming the other methods in 44% of the tests 

and was statistically better in only one. Alternatively, the MaxT method consistently 

outperformed the others in terms of ROC-AUC and was statistically better than the FTM 

method in three out of four comparisons. We speculate this result is related to specific brain 
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functional changes accompanying repeated head injuries evident in the NFL dataset (see 

Discussion). Overall performance of the FTM classifier was still quite good with maximum 

ROC-AUC of 0.939±0.037/0.145 (logistic regression, 100 features). Unlike the AD 

experiments, the neural network classifier did not outperform the logistic regression 

classifier for the FTM dataset but did for the best performing MaxT dataset.

DISCUSSION

The overall classification results suggest the biophysically inspired feed-forward 

hierarchical model used in these experiments is sensitive to differences in functional brain 

imaging data. Both AD and NFL classification experiments showed impressive ROC-AUC 

rates using a method not specifically tuned for these imaging modalities. The full filtering 

pipeline (FTM) results are consistent with published classification rates for the ADNI AD 

data set using brain imaging; although, most reported results use a mix of structural and 

functional imaging features. For example, Hinrichs et al. used the ADNI dataset in a 

spatially augmented boosting framework and reported an ROC-AUC of 0.8716 when using 

just FDG PET (Hinrichs, et al. 2009).

A benefit of using logistic regression classifiers is the clear interpretation of which features 

are most informative for classification. For baseline AD classification, the four most 

informative patches (highest weights) were sampled from AAL atlas regions right 

hippocampus and superior temporal lobes left and right while the posterior cingulate, a 

region commonly associated with disease progression, ranked fourth. For 12m AD 

classification the most informative patches were sampled from frontal superior right, frontal 

superior orbital left, and the temporal pole superior right. For 24m AD classifications the 

most informative patches were sampled from the frontal superior right, temporal pole mid 

left, and hippocampus left. It is interesting that the frontal lobe was not included as a top 

discriminating location in the baseline data set but was in both the 12m and 24m data, 

consistent with well-known structural changes in AD disease progression. We also evaluated 

the performance of the FTM features using ROIs that specifically did not include those 

selected in section 3.2. The results were on average 10–15% lower in ROC-AUC for 

baseline AD than those reported in the results section, suggesting this method is sensitive to 

region of interest selection. Therefore we suspect the filtering pipeline could be used to test 

competing hypotheses about specific regions of interest implicated in disease. The top three 

most informative patches from the features evaluated using ROIs that specifically did not 

include those selected in section 3.2, were sampled from AAL atlas regions frontal inferior 

orbital left, insula right, and occipital middle right. Other informative patches for AD 

included the supramarginal right, lingual right and frontal inferior operculum left. 

Interestingly, the frontal inferior orbital, operculum, and the supramarginal gyrus are all 

associated with AD in the literature suggesting the classification results are still picking up 

on areas related to the disease (Espasy and Jacobs 2010; Grignon, et al. 1998).

Overall, the average patch (AP) feature set outperformed the template matching (TM) 

feature set, suggesting no compelling benefit of template matching without Gabor filtering 

in this application. The utility of oriented Gabor filtering and template matching in deriving 

the feature set was most evident in AD classification. This trend was not observed for the 
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NFL classification experiments. Why would oriented filtering improve classification rates in 

AD and not the NFL data set? It is well known in the literature that structural changes in AD 

follow an anatomical trajectory starting in entorhinal cortex and hippocampus, then moving 

to temporal and parietal lobes, and finally affecting the frontal lobes in late stage AD (Braak 

and Braak 1997; Hua, et al. 2008; Thompson, et al. 2003). These structural changes should 

be reflected in corresponding functional changes. In addition, the accumulation of amyloid 

plaques between nerve cells in the brain is known to be a hallmark of AD. Both the 

structural changes and plaques may be altering the functional brain imaging derived signal 

in orientation, scale, and localized spatial extent due, in part, to brain plasticity and 

compensation.

Alternatively, the full filtering pipeline might not perform as well in data sets with 

widespread, global functional changes observed in the NFL data. Indeed the manuscript by 

Amen et al. reports “significant decreases in regional cerebral blood flow were seen across 

the whole brain”. The comparison feature sets MaxT and DR should perform well in that 

setting because they rely on group differences and maximal variation. It is possible that the 

FTM method performs better in settings with more localized functional differences. The 

NFL dataset differed from the AD dataset in both imaging modality (SPECT vs. PET) and 

uptake conditions (continuous performance test vs. rest), which could contribute to the 

differences in classifier performance. We suspect modality is not a factor as the feature 

scores used in classification are modality neutral. Lower resolution imaging systems may 

contribute to lower true positive rates if the regions of interest are small in size, despite the 

model’s attempt to mitigate this effect using filter sizes of differing spatial scales. 

Regardless of how well the filtering method does, if the discriminating feature of a disease is 

too small to be accurately measured by the imaging device, performance of the classification 

system will undoubtedly suffer. The benefit of this method is that it uses information across 

spatial scales, orientations, and locations in the volumes to calculate the matching scores 

used for subsequent classification and should therefore be less reliant on any one 

discriminating feature. The uptake task will contribute to the functional signals and should 

be taken into account when selecting the regions of interest to calculate feature scores 

(section 2.3.1). Choosing regions that are absolutely not affected by the disease will 

decrease the discriminative power of the method. Alternatively, if the number of subjects in 

the dataset is high and there is no fear of classifier overfitting, choosing many regions, some 

known to be related to the disease and/or task and others whose relationship is unknown 

could provide interesting insight into whether the unknown regions are contributing to 

classification accuracy. Further, because the features of the dataset are computed separately 

from the classifier, one could choose to sample some features from all brain regions and 

either perform regularization in the classifier or choose a classification model that is less 

sensitive to overfitting (e.g. support vector machines). Each of these decisions should be 

made relative to the particular dataset and illness being studied.

CONCLUSIONS

In general our volumetric variant of the hierarchical feed-forward model originally proposed 

by Serre et al. for detecting objects in photographs performed quite well on the functional 

brain imaging data sets used in this study. In fact, it outperformed both the comparison 
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methods and the human counterpart at detecting AD in the FDG PET ADNI data set. The 

method is very general and does not rely on particular imaging modalities. It could be used 

on many spatial maps commonly computed in diagnostic and research imaging studies. 

Furthermore, there is evidence that it could be used to test hypotheses about regions 

implicated in disease. In conclusion, models designed in the computer vision community for 

object recognition and tracking in images of natural scenes may indeed have applications in 

detecting and tracking disease progression in human functional brain imaging with minimal 

modifications.
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Figure I. 
Examples of Gabor filtered slices. For each example, the filter size, σ, and λ remained 

constant at 53, 2.1, and 2.6 respectively while the orientation parameters θ and ϕ were 

varied. A) θ=0, ϕ=0; B) θ=π/4, ϕ=π/4; C) θ=π/2, ϕ=π/4; D) θ=3π/4, ϕ=π/4. The maximum 

filter responses are shown in red. As the orientation of the filters change (A–D), signals of 

similar orientations are selected by the filter.
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Figure IIa. 
Area under the ROC curve for AD classification of the ADNI baseline data set for logistic 

regression (LR) and neural network (NN) classifiers for both 50 and 100 feature datasets 

(MaxT = maximum t-score, DR = PCA data reduction, AP = average patch, TM = template 

matching, FTM = Gabor filtering + template matching). The FTM method outperforms the 

others in 94% of the cases and is statistically better in 50% of the cases.
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Figure IIb. 
Area under the ROC curve for AD classification of the ADNI 12m data set for logistic 

regression (LR) and neural network (NN) classifiers for both 50 and 100 feature datasets 

(MaxT = maximum t-score, DR = PCA data reduction, AP = average patch, TM = template 

matching, FTM = Gabor filtering + template matching). The FTM method outperforms the 

others in 88% of the cases and is statistically better in 38% of the cases.
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Figure IIc. 
Area under the ROC curve for AD classification of the ADNI 24m data set for logistic 

regression (LR) and neural network (NN) classifiers for both 50 and 100 feature datasets 

(MaxT = maximum t-score, DR = PCA data reduction, AP = average patch, TM = template 

matching, FTM = Gabor filtering + template matching). The FTM method outperforms the 

others in 56% of the cases and is statistically better in 19% of the cases.
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Figure III. 
Area under the ROC curve for NFL classification for logistic regression (LR) and neural 

network (NN) classifiers for both 50 and 100 feature datasets (MaxT = maximum t-score, 

DR = PCA data reduction, AP = average patch, TM = template matching, FTM = Gabor 

filtering + template matching). The MaxT method outperformed the other methods, 

statistically better than the FTM method in all comparisons except in the LR-50 feature 

dataset. The FTM ROC-AUC was still very good, always greater than 0.900 and as high as 

0.939 in the NN-100 feature dataset.
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Table IV

Results from the visual ratings of neuroanatomist J.H. Fallon from the ADNI baseline data.

Method AD-TP AD-FP HC-TP HC-FP

J.H.F 0.718 0.380 0.671 0.244

FTM 0.875 0.122 0.878 0.115

DR 0.622 0.389 0.611 0.378

MaxT 0.829 0.375 0.625 0.171

The table lists true positive (TP) and false positive (FP) values for the Alzheimer’s disease (AD) and healthy control (HC) classes compared to the 
FTM, DR, and MaxT methods. The FTM method outperforms both the human rater and the other methods.

MaxT = maximum t-score, DR = PCA data reduction, FTM = Gabor filtering + template matching.
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